Experiments involving the bishydrazino or bishydroxylamino compounds were frequently complicated by the production of the appropriate monohydrazino or monohydroxylamino derivative as a major by-product. Schmutzler²⁴ has observed the slow disproportionation

$$2FP(NR_2) \rightarrow F_2PNR_2 + P(NR_2)_3$$
 [R = alkyl]

Similar reactions involving the compounds studied here would not be unexpected. Thus, even though the trissubstituted phosphines were not isolated in these

(24) R. Schmutzler, J. Chem. Soc., 5630 (1965).

studies, such a disproportionation may also occur with hydrazino- and hydroxylaminohalophosphines.²⁵

Acknowledgment.—Acknowledgment is gratefully made to the Petroleum Research Fund administered by the American Chemical Society for support of the research. The mass spectrometer was obtained through NSF Equipment Grant GP 5813.

(25) NOTE ADDED IN PROOF. -Since submission of this paper mass spectral molecular weights have been obtained for ClP[N(CH₃)N(CH₃)₂]₂ theory, 212; found, 212; Cl₂PN(CH₃)OCH₃ theory, 161; found, 161; ClP{N(CH₃)-OCH₃]₂ theory, 186; found, 186; FP[N(CH₃)N(CH₃)₂]₂ theory, 196; found, 196; and FP[N(CH3)OCH3]2 theory, 170; found, 170. These spectra were run using liquid samples injected into a Perkin-Elmer Hitachi RMU-6D spectrometer.

> CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF IDAHO, MOSCOW, IDAHO 83843

Reactions of Halodifluorophosphines with Silver Salts¹

BY GERALD G. FLASKERUD, KENT E. PULLEN, AND JEAN'NE M. SHREEVE

Received October 23, 1968

The reactions of PF₂I, PF₂Br, or PF₂Cl with silver salts have been shown to provide an excellent route to new PF₂-containing compounds. Compounds prepared and characterized are $CF_{2}C(O)OPF_{2}$, $CF_{3}CF_{2}C(O)OPF_{2}$, $CF_{3}CF_{2}CF_{2}C(O)OPF_{2}$, and $CH_3C(O)OPF_2$. In addition, the previously reported compounds PF_2CN and PF_2NCO are easily prepared by this method.

Recent investigations have shown the utility of using difluoroiodophosphine² as a reagent for the syntheses of compounds which contain the PF_2 moiety. Thus, PF₂I has been found to react with mercury to give tetrafluorodiphosphine,3 with mercury and hydrogen iodide to give diffuorophosphine,⁴ with copper(I) oxide to give μ -oxo-bisdifluorophosphine,³ and with copper(I) cvanide to give cyanodifluorophosphine.^{3a} With sulfur, iodothiophosphoryl difluoride is formed.⁵ Both PF₂I and PF₂Br have been found to add across the carbonyl double bond in hexafluoroacetone,⁶ and to react with hydrogen chalcogenides and trimethyltin hydroxide.7 Chlorodifluorophosphine8-10 and bromodiffuorophosphine^{3b,11} have been known for a considerable time, but little of their chemistry has been studied.

Reactions of the halodifluorophosphines with silver

salts at room temperature provide an excellent general route to PF_2X compounds; e.g., the new compounds, trifluoroacetatodifluorophosphine, $CF_{3}C(O)OPF_{2}$, pentafluoropropionatodifluorophosphine, $CF_{3}CF_{2}C(O)OPF_{2}$, heptafluoro-*n*-butyratodifluorophosphine, CF₃CF₂CF₂C(O)OPF₂, and acetatodifluorophosphine, $CH_{3}C(O)OPF_{2}$, have been prepared and characterized. The previously reported compounds, cyanodifluorophosphine,^{3a} PF₂CN, and isocyanatodiffuorophosphine,¹² PF₂NCO, also were readily prepared by this method.

Although the perfluorocarboxylatodifluorophosphines are hydrolyzed rapidly by moisture, they seem to have considerable thermal stability; e.g., $C_2F_3C(O)OPF_2$ showed no indication of decarboxylation or decomposition after several days at 150°.

Experimental Section

Apparatus.---A standard Pyrex high-vacuum system was used for manipulation of volatile compounds. Glass stopcocks were lubricated with Kel-F No. 90 grease (3M Co.). Reactions were carried out in 100-ml Pyrex flasks fitted with a Teflon stopcock (Fischer and Porter Co.) and a side arm for admission of the silver salt.

Infrared spectra (Table I) were recorded in the gas phase with a Beckman IR5A or a Perkin-Elmer Model 137 Infracord spectrophotometer. The samples were contained in a Pyrex cell (6-mm path length) equipped with NaCl windows. High-resolution ¹⁹F nmr spectra (Table II) were obtained using a Varian Model

⁽¹⁾ Presented in part at the Northwest Regional Meeting of the American Chemical Society, Portland, Ore., June 1968, and at the 2nd European Symposium on Fluorine Chemistry, Göttingen, Germany, Aug 1968.

⁽²⁾ R. W. Rudolph, J. G. Morse, and R. W. Parry, Inorg. Chem., 5, 1464 (1966).

^{(3) (}a) R. W. Rudolph, R. C. Taylor, and R. W. Parry, J. Am. Chem. Soc., 88, 3729 (1966); (b) M. Lustig, J. K. Ruff, and C. B. Colburn, ibid., 88, 3875 (1966).

⁽⁴⁾ R. W. Rudolph and R. W. Parry, Inorg. Chem., 4, 1339 (1965).

⁽⁵⁾ J. M. Shreeve, J. Inorg. Nucl. Chem., 30, 3375 (1968).

⁽⁶⁾ M. Lustig and W. E. Hill, Inorg. Chem., 6, 1448 (1967)

⁽⁷⁾ R. W. Parry and L. F. Centofanti, 2nd European Symposium on Fluorine Chemistry, Göttingen, Germany, Aug 1968; Inorg. Chem., 7, 1005 (1968).

⁽⁸⁾ H. S. Booth and A. R. Bozarth, J. Am. Chem. Soc., 61, 2927 (1939). (9) R. R. Holmes and W. P. Gallagher, Inorg. Chem., 2, 433 (1963).

⁽¹⁰⁾ R. G. Cavell, J. Chem. Soc., 1992 (1964).

^{(11).} H. S. Booth and S. G. Frary, J. Am. Chem. Soc., 61, 2930 (1939).

⁽¹²⁾ H. H. Anderson, ibid., 69, 2495 (1947).

TABLE I

INFRARED SPECTRA (FREQUENCIES IN CM⁻¹)

CF3C(O)OPF2	CF3CF2C(O)OPF2	C3F7C(O)OPF2	CH ₂ C(O)OPF ₂	PF2NCO
1809 vs	1809 s	1805 s	1780 vs	2400 m
1351 s	1350 m	1382 m	1423 w	2285 vvs
1247 vs	1300 s	1300 s	1375 s	1435 m
1196 vs	1238 vs	1243 vvs	1202 s	1405 m
1124 vs	1210 s, sh	1224 vvs	1007 s	857 vs, br
1087 s	1153 vs	1198 s	898 s	715 s, br
880 vs, br	1030 vs	1143 vs	856 vs, br	
835 m, sh	888 vs	1080 s	782 s	
777 s	872 vs	968 s		
757 vs	818 m	932 s		
101 15	755 vs, br	886 vs		
		868 vs		
		814 m		
		752 s, br		

TABLE II

¹⁹F NMR SPECTRA (ϕ^*)

CFa	-C(0)0	PF2	CF3PF2							
Singlet	-(-,-	Doublet		Triplet	Quartet	$\mathbf{Doublet}$				
3.14		2.0		3.0	2.0	2.0				
76.5		49.9		83.8	122.1	49.7				
$J_{P-F} = 1$	389 cps		$J_{{\rm CF}_3-{\rm CF}_2} = 1.5$ cps							
			$J_{P-F} = 1389 \text{ cps}$							
					~~~~	DT				
CF:	$CF_{2}CF_{2}C(O)OPF_{2}$				CH3C(0)OPF2					
Triplet	Singlet	Quartet	Doublet	Singlet		Doublet				
3.0	2.0	2.0	1.9							
81.4	127.2	119.7	49.7	2.1		54.4				
J	CF3-aCF2	=8.5 cps	$J_{\rm P-F} \approx 1350~{\rm cps}$							
$J_{P-F} = 1388$ cps				PF2NCO						
-	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		Doublet							
			39.2							
			$J_{\rm P-F} = 1361  {\rm cps}$							
aDalat	in nool	0.000								

^aRelative peak area.

HA-100 spectrometer operating at 94.1 Mc. Trichlorofluoromethane (Matheson Co.) which had been dried over  $P_4O_{10}$  or tetramethylsilane was used as an internal reference. Mass spectra (Table III) were obtained with a Hitachi Perkin-Elmer Model RMU-6E spectrometer operating at an ionization potential of 70 eV. Vapor densities were determined by the method of Regnault using a Pyrex bulb equipped with a Teflon stopcock.

Elemental analyses (Table IV) were performed by Alfred Bernhardt Microanalytisches Laboratorium, Max Planck Institut, Mulheim (Ruhr), West Germany.

**Reagents.**—PF₂I, PF₂Br, and PF₂Cl were prepared by the reaction of appropriate hydrogen halide with  $(CH_3)_2NPF_2$ .^{2, 8b, 10} HI, HBr, and HCl were obtained from the Matheson Co. and were used without further purification. CF₃CO₂Ag and C₂F₅CO₂Ag were obtained from Columbia Organic Chemicals Co., n-C₃F₁CO₂Ag was from Peninsular ChemResearch, CH₃CO₂Ag was from Allied Chemical Co., AgOCN was from Eastman Organic Chemicals, and AgCN was from Fisher Scientific Co. Before use, the silver salts were ground to a fine powder and dried by heating under dynamic vacuum at 100° for 30 min.

General Procedure.—Essentially the same method was followed for the preparation of all compounds.  $PF_2Cl$ ,  $PF_2Br$ , or  $PF_2I$  reacted rapidly and nearly quantitatively toward the silver salts used. In a typical reaction,  $PF_2Cl$  (3.38 mmol) was condensed onto a slight excess of dry silver trifluoroacetate (4.57 mmol) at  $-183^{\circ}$  and the reaction bulb was allowed to warm to  $25^{\circ}$ . That reaction occurred below room temperature was evidenced by a jumping action and a simultaneous color change of the salt. The reaction was complete by the time ambient temperature was reached (10 min). The volatile

## TABLE III

## MASS SPECTRA (MASS NUMBER, SPECIES, Relative Abundance)

#### $CF_{3}C(O)OPF_{2}$

31 (CF⁺, P⁺) 3.4, 43 (C₂F⁺) 3.5, 44 (CO₂⁺) 3.4, 45 (COOH⁺) 3.0, 47 (PO⁺) 4.3, 50 (CF₂⁺, PF⁺) 9.0, 66 (PFO⁺ 1.8, 69 (CF₃⁺, PF₂⁺) 100.0, 85 (PF₂O⁺) 2.7, 88 (PF₃⁺, CF₄⁺) 8.5, 97 (C₂F₃O⁺) 4.8, 113 (CO₂PF₂⁺, C₂F₃O₂⁺) 9.7, 135 (PF₂OPF⁺) 0.5, 154 (PF₂OPF₂⁺) 2.8

#### $C_2F_5C(O)OPF_2$

31 (CF⁺, P⁺) 5.8, 44 (CO₂⁺) 4.5, 45 (COOH⁺) 5.6, 47 (PO⁺) 6.1, 50 (CF₂⁺, PF⁺) 10.0, 51 (CF₂H⁺) 2.8, 66 (PFO⁺) 3.3, 69 (CF₃⁺, PF₂⁺) 100.0, 85 (PF₂O⁺) 3.7, 86 (HPF₂O⁻) 4.5, 88 (PF₃⁺, CF₄⁺) 7.6, 97 (C₂F₃O⁺) 3.2, 100 (C₂F₄⁺) 3.7, 113 (CO₂PF₂⁺, C₂F₃O₂⁺) 8.1, 119 (C₂F₅⁺) 15.1, 135 (PF₂OPF⁺) 2.4, 147 (C₃F₅O⁺) 5.4, 154 (PF₂OPF₂⁺) 1.9, 232 (C₂F₅CO₂PF₂⁺) trace

#### $C_{3}F_{7}C(O)OPF_{2}$

31 (CF⁺, P⁺) 3.0, 43 (C₂F⁺) 6.7, 44 (CO₂⁺) 5.5, 45 (COOH⁺) 1.3, 47 (PO⁺) 5.5, 50 (CF₂,⁺ PF⁺) 5.1, 55 (C₃F⁺) 4.2, 56 (C₂O₂⁺) 2.1, 57 (C₂O₂H⁺) 3.2, 64 (CFO₂H⁺) 3.1, 66 (PFO⁺) 2.3, 69 (CF₃⁺, PF₂⁺) 100.0, 81 (C₂F₃⁺) 4.1, 85 (PF₂O⁺) 3.8, 86 (HPF₂O⁺) 2.3, 88 (PF₃⁺, CF₄⁺) 6.0, 97 (C₂F₃O⁺) 1.3, 100 (C₂F₄⁺) 9.8, 104 (PF₄O⁺) 2.0, 109 (C₃F₃O⁺) 2.4, 113 (CO₂PF₂⁺, C₂F₃O₂⁺) 10.2, 119 (C₂F₅⁺) 17.8, 131 (C₃F₅⁺) 2.1, 135 (PF₂OPF⁺) 4.2, 147 (C₃F₅O⁺) 2.0, 150 (C₃F₆⁺) 3.8, 154 (PF₂OPF₂⁺) 1.7, 169 (C₃F₇⁺) 25.9, 197 (C₈F₇CO⁺) 8.2, 282 (C₃F₇CO₂PF₂) trace

### $CH_{3}C(O)OPF_{2}$

13 (CH⁺) 1.9, 14 (CH₂⁺) 6.1, 15 (CH₃⁺) 41.2, 28 (N₂⁺, CO⁺) 6.5, 29 (HCO⁺) 6.0, 31 (P⁺) 1.3, 41 (HC₂O⁺) 2.0, 42 (H₂C₂O⁺) 10.6, 43 (C₂H₃O⁺) 100.0, 44 (CO₂⁺) 2.7, 45 (COOH⁺) 9.7, 47 (PO⁺) 3.2, 50 (PF⁺) 6.3, 60 (CH₃COOH⁺) 4.1, 66 (PFO⁺) 1.4, 69 (PF₂⁺) 28.0, 85 (PF₂O⁺) 2.4, 88 (PF₃⁺) 4.1, 113 (CO₂PF₂⁺) 0.7

#### PF₂NCO

28 (N₂⁺, CO⁺) 19.1, 31 (P⁺) 7.4, 42 (NCO⁺) 9.2, 43 (HNCO) 3.7, 44 (CO₂⁺) 3.8, 45 (PN⁺) 10.1, 46 (PFNCO⁺) 2.0, 47 (PO⁺) 8.5, 50 (PF⁺) 20.0, 64 (PFN⁺) 6.2, 69 (PF₂⁺) 100.0, 92 (PFNCO⁺) 37.8, 111 (PF₂NCO⁺) 59.5

reaction products were removed and separated giving 82.5% CF₃C(O)OPF₂, 8.5% (CF₃CO)₂O, and 8.5% PF₂OPF₂, accompanied by a trace of PF₃. In all preparations, small amounts of the corresponding acid anhydride and PF₂OPF₂ were observed.

In the preparation of  $CF_3C(O)OPF_2$ ,  $C_2F_5C(O)OPF_2$ , and  $n-C_3F_7C(O)OPF_2$ , separation of reaction products and subsequent purification of the desired compound were accomplished

Compound		l wt— Found	$\overline{\mathbb{C}_{\mathrm{alcd}}}$	C Found	$\overline{\mathbb{C}_{alcd}}$	6 F Found	Caled	P	Log Pmm = X	$=\left(-X/Y\right)$	T(°K)) + Y Bp, °Cª	ΔH _v , kcal	ΔS,, eu
$CF_3C(O)OPF_2$ $C_2F_5CO(O)PF_2$	$\frac{182}{232}$	$\frac{182}{234}$	$13.20 \\ 15.53$	$\begin{array}{c} 13.34 \\ 15.39 \end{array}$	 57.33	57.29	$17.02 \\ 13.35$	$16.76 \\ 13.44$	$\begin{array}{c} 1535\\ 1662 \end{array}$	$5.317 \\ 5.313$	$17.3 \\ 35.5$	$7.02 \\ 7.58$	24.1 24.5
$n-\mathrm{C_3F_7C}(\mathrm{O})\mathrm{OPF_2}$	282	277	17.04	17.19	60.63	60.76	10.98	11.03	1676	4.685		7.68	24.0 22.9
$CH_{3}C(O)OPF_{2}$	128	130	• • •	• • •	• • •	• • •	24.20	24.32	• • •	• • •	b	• • •	• • •

TABLE IV

^a Extrapolated. ^b Vapor pressure about 120 mm at 24°.

by gas chromatography employing a 7 or 11 ft  $\times 0.25$  in. aluminum tube packed with 20% by weight Kel-F No. 3 polymer oil (3M Co.) on acid-washed Chromasorb P (Wilkens Instrument and Research, Inc.). Purification of CH₃C(O)OPF₂, PF₂CN, and PF₂NCO was brought about by trap-to-trap distillation. Trap temperatures of -60, -78, and -183° were used for CH₃C(O)OPF₂; -60, -96, and -183° were used for PF₂CN and PF₂NCO. CH₃C(O)OPF₂ was retained at -78° and PF₂CN and PF₂NCO were retained at -95°.

# **Results and Discussion**

All of the new diffuorophosphines at room temperature are colorless, volatile liquids which react readily with water but do not attack glass or mercury. While the  $R_1C(O)OPF_2$  compounds ( $R_i = CF_3$ ,  $C_2F_5$ ,  $C_3F_7$ ) may be stored at 25° under vacuum for extended periods of time without decomposition,  $CH_3C(O)OPF_2$ decomposes to a red polymeric material within 24 hr under the same conditions. However, the latter may be transferred in a vacuum system and stored at  $-183^\circ$  without polymerization occurring. Because of this thermal instability, the normal boiling point was not determined.

The hydrolysis of each of the  $RC(O)OPF_2$  compounds was followed qualitatively by infrared spectroscopy. The admission of a small amount of moist air into an infrared cell which contained a sample of the pure compound resulted in a spectrum that showed bands attributable to  $(RC(O))_2O$  and  $PF_2OPF_2$  accompanied by a decrease in the intensity of the original bands. Additional moist air converted the anhydride to RC(O)OH.

Since chloro-, bromo-, and iododifluorophosphines react with these silver salts with equal ease, it is preferable to use either the chloro or bromo compound because of its relatively greater stability.  $PF_2I$  tends to disproportionate into  $PF_3$  and  $PI_{3.2}$ 

Characteristic P–F stretching frequencies in the infrared region (Table I) occur in the range from 850 to 900 cm⁻¹. In  $R_fC(O)OPF_2$  ( $R_f = CF_3$ ,  $C_2F_5$ , and  $n-C_3F_7$ ) bands between 1805 and 1809 cm⁻¹ are due to C=O; while for  $CH_3C(O)OPF_2$  this band shifts to 1780 cm⁻¹. The CF stretching region in  $R_fC(O)OPF_2$  encompasses a wide range (1000–1400 cm⁻¹). The bands in PF₂NCO may be assigned as follows: 2400 and 2285 cm⁻¹ NCO pseudoantisymmetric stretch, in and out of phase; 1435 and 1405 cm⁻¹, NCO pseudo-symmetric stretch, in and out of phase; 1435 and 1405 cm⁻¹, PF₂ stretch; 715 cm⁻¹, PNCO deformation, in plane.¹³ Since bands occur in the 1400–1500-cm⁻¹ region and a

(13) F. A. Miller and G. L. Carlson, Spectrochim. Acta, 17, 977 (1961).

cyanate is not expected to have any fundamentals between 1200 and 2000 cm⁻¹, the compound formed in the reaction of PF₂Cl with AgOCN must be the isocyanate PF₂NCO. The mass spectral evidence below also helps to verify this conclusion. PF₂CN was identified from its previously reported infrared spectrum.^{3a}

The ¹⁹F nmr spectra of  $R_fC(O)OPF_2$  and  $RC(O)OPF_2$ are consistent with the postulated compounds. Fluorine chemical shifts of  $PF_2$  groups in the region between  $\phi^*$  44 and 50 are analogous to those in ROPF₂ compounds (R = alkyl, phenyl).¹⁴ No spin-spin coupling is observed between fluorine bonded to phosphorus and fluorine or hydrogen in the carboxalato groups. The  $J_{P-F}$  values found are about 1380 cps for the perfluoro compounds and decrease slightly when phosphorus is bonded to NCO or CH₃C(O)O. This is also observed as fluorine is replaced by less electronegative groups in the series PF₃, CF₃PF₂, and CH₃PF₂.¹⁴

Although molecular ions in the mass spectra (Table III) are observed for all compounds except  $CF_{3}C(O)$ - $OPF_2$  and  $CH_3C(O)OPF_2$ , only in the case of  $PF_2NCO$ does this species occur in appreciable relative abundance (59.5). In  $PF_2CN$ , the parent ion is also the second most abundant peak.^{3a} The presence of peaks at m/e 45 (PN⁺) and m/e 64 (PF₂N⁺) and the absence of m/e 85 (PF₂O⁺) lend support to the infrared evidence that the compound is an isocyanate rather than a cyanate. Existence of peaks at m/e 47 (PO⁺) and m/e 43 (HNCO) for PF₂NCO and analogous fragments for the other compounds can arise from hydrolysis, e.g., m/e 45 (COOH⁺), m/e 135 (PF₂OPF⁺), and m/e 154 (PF₂OPF₂⁺). Also, for CH₃C(O)OPF₂, m/e 60  $(CH_{3}C(0)OH)$  and for  $C_{2}F_{5}C(0)OPF_{2}$  and  $C_{3}F_{7}C(0)$ - $OPF_2$ , m/e 86 (HPF₂O) are observed. Fragmentation patterns for all compounds contain some ions derived from rearrangement, e.g., m/e 88 (CF₄⁺, PF₃⁺). For  $R_fC(O)OPF_2$  ( $R_f = CF_3$ ,  $C_2F_5$ ,  $C_3F_7$ ), fragments, including some which are a result of rearrangement, e.g., CF₂H⁺, CF₃CO⁺, and CF₃CO₂⁺, typically associated with perfluorocarboxylic acids occur.¹⁵

Acknowledgments.—This work was supported in part through a contract with the Office of Naval Research. We are indebted to the National Science and the Max C. Fleischmann Foundations for grants to purchase the HA-100 nmr spectrometer. The authors wish to thank Mr. Leon Zaborowski for the ¹⁹F nmr spectra and Dr. Gary R. Hansen and Mr. Robert Boyd for the mass spectra.

⁽¹⁴⁾ R. Schmutzler, Advan. Fluorine Chem., 5, 254 (1965).
(15) J. R. Majer, *ibid.*, 2, 70 (1961).