Experiments involving the bishydrasino or bishydroxylamino compounds were frequently complicated by the production of the appropriate monohydrazino or monohydroxylamino derivative as a major by-product. Schmutzler²⁴ has observed the slow disproportionation

$$
2\mathrm{FP}(\mathrm{NR}_2)\rightarrow \mathrm{F}_2\mathrm{PNR}_2+\mathrm{P}(\mathrm{NR}_2)_3\quad [R=alkyl]
$$

Similar reactions involving the compounds studied here would not be unexpected. Thus, even though the trissubstituted phosphines were not isolated in these

(24) R. Sohmutzler, *J. Chem.* **SOC.,** 5630 (1965).

studies, such a disproportionation may also occur with hydrazino- and hydroxylaminohalophosphines.²⁵

Acknowledgment.--Acknowledgment is gratefully made to the Petroleum Research Fund administered by the American Chemical Society for support of the research. The mass spectrometer was obtained through NSF Equipment Grant GP **5813.**

(25) NOTE **ADDED IS** PROOF. -Since submission of this paper mass spectral molecular weights have been obtained for CIP[N(CH₃)N(CH₃)₂)₂ theory, 212; found, 212; $\text{Cl}_2\text{PN}(\text{CH}_3)\text{OCH}_3$ theory, 161; found, 161; $\text{CIPN}(\text{CH}_3)$ -OCH₃l₂ theory, 186; found, 186; FP[N(CH₃)N(CH₃)₂]₂ theory, 196; found, 196; and FP[N $(CH₃)OCH₃$]_z theory, 170; found, 170. These spectra were run using liquid samples injected into a Perkin-Elmer Hitachi RMU-6D spectrometer.

> CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF IDAHO, Moscow, IDAHO 83843

Reactions **of** Halodifluorophosphines with Silver Salts1

BY GERALD G. FLASKERUD, KENT E. PULLEN, AND JEAN'NE M. SHREEVE

Received October 23, 1968

The reactions of PF_2I , PF_2Br , or PF_2Cl with silver salts have been shown to provide an excellent route to new PF_2 -containing compounds. Compounds prepared and characterized are $CF_3C(0)$ OPF₂, $CF_3CF_2C(C)$ OPF₂, $CF_3CF_2CF_2C(C)$ oPF_z, and $CH_3C(O)$ OPF₂. In addition, the previously reported compounds PF_2CN and PF_2NCO are easily prepared by this method.

Recent investigations have shown the utility of using difluoroiodophosphine2 as a reagent for the syntheses of compounds which contain the PF_2 moiety. Thus, PF_2I has been found to react with mercury to give tetrafluorodiphosphine,³ with mercury and hydrogen iodide to give difluorophosphine,⁴ with copper (I) oxide to give μ -oxo-bisdifluorophosphine,³ and with copper (I) cyanide to give cyanodifluorophosphine.^{3a} With sulfur, iodothiophosphoryl difluoride is formed.⁵ Both PF_2I and PF_2Br have been found to add across the carbonyl double bond in hexafluoroacetone,⁶ and to react with hydrogen chalcogenides and trimethyltin hydroxide.⁷ Chlorodifluorophosphine⁸⁻¹⁰ and bromodifluorophosphine^{3b,11} have been known for a considerable time, but little of their chemistry has been studied.

Reactions of the halodifluorophosphines with silver

- (5) J. M. Shreeve, *J. Inorg. Nucl. Chem.,* 30, 3375 (1968).
- (6) RI. Lustig and W. E. Hill, *Inorg. Chem., 6,* 1448 (1967).

(10) R. G. Cavell, *J. Chem. Soc.*, 1992 (1964).

salts at room temperature provide an excellent general route to PF2X compounds; *e.g.,* the new compounds, trifluoroacetatodifluorophosphine, $CF_3C(O)$ OPF₂, pentafluoropropionatodifluorop hosphine, $CF₃CF₂C(O)$ OPF₂, heptafluoro-n-butyratodifluorophosphine, $CF_3CF_2CF_2C(O)$ OPF₂, and acetatodifluorophosphine, $CH_3C(O)$ OPF₂, have been prepared and characterized. The previously reported compounds, cyanodifluorophosphine,^{3a} PF₂CN, and isocyanatodifluorophosphine,¹² PF₂NCO, also were readily prepared by this method.

Although the perfluorocarboxylatodifluorophosphines are hydrolyzed rapidly by moisture, they seem to have considerable thermal stability; *e.g.*, $C_2F_5C(0)$ OPF₂ showed no indication of decarboxylation or decomposition after several days at 150'.

Experimental Section

Apparatus.--A standard Pyrex high-vacuum system was used for manipulation of volatile compounds. Glass stopcocks were lubricated with Kel-F No. 90 grease (3M Co.). Reactions were carried out in 100-ml Pyrex flasks fitted with a Teflon stopcock (Fischer and Porter Co.) and a side arm for admission of the silver salt.

Infrared spectra (Table I) were recorded in the gas phase with a Beckman IR5A or a Perkin-Elmer Model 137 Infracord spectrophotometer. The samples were contained in a Pyrex cell (6-mm path length) equipped with NaCl windows. High-resolution 19F nmr spectra (Table 11) were obtained using a Varian Model

⁽¹⁾ Presented in part at the Northwest Regional Meeting of the American Chemical Society, Portland, Ore., June 1968, and at the 2nd European Symposium on Fluorine Chemistry, Göttingen, Germany, Aug 1968.

⁽²⁾ R. **W.** Rudolph, J. G. Morse, and R. W. Parry, *Inorq. Chem.,* **5,** 1464 (1966).

⁽³⁾ (a) R. W. Rudolph, R. C. Taylor, and R. W. Parry, *J. Am. Chem. SOC., 88,* 3729 (1966); (b) M. Lustig, J. K. Ruff, and C. B. Colburn, *ibid., 88,* 3875 (1966).

⁽⁴⁾ R. **W.** Rudolph and R. **W.** Parry, *Incro. Chem.,* 4,1339 (1965).

⁽⁷⁾ R. W. Parry and L. F. Centofanti, 2nd European Symposium on Fluorine Chemistry, Giittingen, Germany, Aug 1968; *Inorg. Chem.,* **7,** 1005 (1968).

⁽⁸⁾ H. S. Booth and **A.** R. Bozarth, *J. Am. Chem. Soc.,* 61,2927 (1939). (9) R. R. Holmes and W. P. Gallagher, *Inorg. Chem.,* 2,433 (1963).

^{(11).} H. S. Booth and S. G. Frary, *J. Am. Chem. Soc.,* 61, 2930 (1939).

⁽¹²⁾ H. H. Anderson, *zbzd,* 69,2495 (1947).

TABLE I

INFRARED SPECTRA (FREQUENCIES IN CM^{-1})

TABLE I1

¹⁹F NMR SPECTRA (ϕ^*)

HA-100 spectrometer operating at 94.1 Mc. Trichlorofluoromethane (Matheson Co.) which had been dried over P4O10 or tetramethylsilane was used as an internal reference. Mass spectra (Table 111) were obtained with a Hitachi Perkin-Elmer Model RMU-6E spectrometer operating at an ionization potential of 70 eV. Vapor densities were determined by the method of Regnault using a Pyrex bulb equipped with a Teflon stopcock.

Elemental analyses (Table IV) were performed by Alfred Bernhardt Microanalytisches Laboratorium, Max Planck Institut, Mulheim (Ruhr), West Germany.

Reagents.-PF₂I, PF₂Br, and PF₂Cl were prepared by the reaction of appropriate hydrogen halide with $(CH_3)_2NPF_2.^{2,8b,10}$ HI, HBr, and HC1 were obtained from the Matheson Co. and were used without further purification. $CF₃CO₂Ag$ and $C_2F_5CO_2Ag$ were obtained from Columbia Organic Chemicals Co., $n-\text{C}_3\text{F}_7\text{CO}_2\text{Ag}$ was from Peninsular ChemResearch, CH₃CO₂Ag was from Allied Chemical Co., AgOCN was from Eastman Organic Chemicals, and AgCN was from Fisher Scientific Co. Before use, the silver salts were ground to a fine powder and dried by heating under dynamic vacuum at 100" for 30 min.

General Procedure.--Essentially the same method was followed for the preparation of all compounds. $\rm PF_2Cl, \, PF_2Br,$ or PFzI reacted rapidly and nearly quantitatively toward the silver salts used. In a typical reaction, PF_2Cl (3.38 mmol) was condensed onto a slight excess of dry silver trifluoroacetate (4.57 mmol) at -183° and the reaction bulb was allowed to warm to 25°. That reaction occurred below room temperature was evidenced by a jumping action and a simultaneous color change of the salt. The reaction was complete by the time ambient temperature was reached (10 min). The volatile

TABLE I11

MASS SPECTRA (MASS NUMBER, SPECIES, RELATIVE ABUNDANCE)

$CF_sC(O)$ OPF₂

31 (CF', P+) 3.4, 43 (CzF') 3.5, 44 *((202')* 3.4, 45 (COOH') 3.0, 47 (PO⁺) 4.3, 50 (CF₂⁺, PF⁺) 9.0, 66 (PFO⁺ 1.8, 69 (CF₃⁺, PF_2 ⁺) 100.0, 85 (PF₂O⁺) 2.7, 88 (PF₃⁺, CF₄⁺) 8.5, 97 (C₂F₃O⁺) 4.8, 113 $(CO_2PF_2^+$, $C_2F_3O_2^+$) 9.7, 135 (PF_2OPF^+) 0.5, 154 $(PF₂OPF₂⁺) 2.8$

$C_2F_5C(O)$ OPF₂

31 (CF⁺, P⁺) 5.8, 44 (CO₂⁺) 4.5, 45 (COOH⁺) 5.6, 47 (PO⁺) 6.1, 50 (CF₂⁺, PF⁺) 10.0, 51 (CF₂H⁺) 2.8, 66 (PFO⁺) 3.3, 69 (CF₃⁺, PF_2 ⁺) 100.0, 85 (PF₂O⁺) 3.7, 86 (HPF₂O⁺) 4.5, 88 (PF₃⁺, CF₄⁺) 7.6, 97 ($C_2F_3O^+$) 3.2, 100 ($C_2F_4^+$) 3.7, 113 ($CO_2PF_2^+$, $C_2F_3O_2^+$) 8.1, 119 $(C_2F_5^+)$ 15.1, 135 (PF_2OPF^+) 2.4, 147 $(C_3F_5O^+)$ 5.4, 154 (PF_2OPF_2 ⁺) 1.9, 232 ($C_2F_5CO_2PF_2$ ⁺) trace

$C_3F_7C(O)$ OPF₂

31 (CF⁺, P⁺) 3.0, 43 (C₂F⁺) 6.7, 44 (CO₂⁺) 5.5, 45 (COOH⁺) 1.3, 47 (PO⁺) 5.5, 50 (CF₂,⁺ PF⁺) 5.1, 55 (C₃F⁺) 4.2, 56 (C₂O₂⁺) 2.1, 57 ($C_2O_2H^+$) 3.2, 64 (CFO_2H^+) 3.1, 66 (PFO⁺) 2.3, 69 (CF_3^+ , PF_2 ⁺) 100.0, 81 (C₂F₃⁺) 4.1, 85 (PF₂O⁺) 3.8, 86 (HPF₂O⁺) 2.3, 88 (PF₃⁺, CF₄⁺) 6.0, 97 (C₂F₃O⁺) 1.3, 100 (C₂F₄⁺) 9.8, 104 (PF_3O^+) 2.0, 109 $(C_3F_3O^+)$ 2.4, 113 $(CO_2PF_2^+, C_2F_3O_2^+)$ 10.2, 119 (C_2F_5 ⁺) 17.8, 131 (C_3F_5 ⁺) 2.1, 135 (PF_2 OPF⁺) 4.2, 147 $(C_3F_5O^+)$ 2.0, 150 $(C_3F_6^+)$ 3.8, 154 $(PF_2OPF_2^+)$ 1.7, 169 $(C_3F_7^+)$ 25.9, 197 ($C_3F_7CO^+$) 8.2, 282 ($C_3F_7CO_2PF_2$) trace

$CH_3C(O)OPF_2$

13 (CH+) 1.9, 14 (CHz+) 6.1, 15 (CH3+) 4L2, 28 **(Nz',** CO+) 6.5, 29 (HCO⁺) 6.0, 31 (P⁺) 1.3, 41 (HC₂O⁺) 2.0, 42 (H₂C₂O⁺) 10.6, 43 ($C_2H_3O^+$) 100.0, 44 (CO_2^+) 2.7, 45 ($COOH^+$) 9.7, 47 (PO^+) 69 (PF₂⁺) 28.0, 85 (PF₂O⁺) 2.4, 88 (PF₃⁺) 4.1, 113 (CO₂PF₂⁺) 3.2, 50 (PF⁺) 6.3, 60 (CH₃COOH⁺) 4.1, 66 (PFO⁺) 1.4, 0.7

PFzNCO

28 (Nz+, GO+) 19.1, 31 (P+) 7.4, 42 (NCO+) 9.2, 43 (HNCO) 3.7, 44 (CO₂⁺) 3.8, 45 (PN⁺) 10.1, 46 (PFNCO⁺) 2.0, 47 (PO⁺) 8.5, 50 (PFf) 20.0, 64 (PFN+) 6.2, 69 (PFz+) 100.0, 92 (PFNCO') 37.8, 111 (PF₂NCO⁺) 59.5

reaction products were removed and separated giving 82.5% $CF₃C(O)$ OPF₂, 8.5% (CF₃CO)₂O, and 8.5% PF₂OPF₂, accompanied by a trace of PF3. In all preparations, small amounts of the corresponding acid anhydride and $\rm PF_{2}OPF_{2}$ were observed.

In the preparation of $CF_3C(0)$ OPF₂, $C_2F_3C(0)$ OPF₂, and $n-C_3F_7C(O)$ OPF₂, separation of reaction products and subsequent purification of the desired compound were accomplished

TABLE IV

Extrapolated. * Vapor pressure about **120** mm at **24".**

by gas chromatography employing a 7 or 11 ft \times 0.25 in. aluminum tube packed with 20% by weight Kel-F No. **3** polymer oil **(3M** Co.) on acid-washed Chromasorb P (Wilkens Instrument and Research, Inc.). Purification of $\text{CH}_3\text{C}(O) \text{OPF}_2$, PF_2CN , and PF_2NCO was brought about by trap-to-trap distillation. Trap temperatures of -60 , -78 , and -183° were used for $CH_3C(O)$ OPF₂; -60, -96, and -183° were used for PF₂CN and PF_2NCO . $CH_3C(O)OPF_2$ was retained at $-78°$ and PF_2CN and PF_2NCO were retained at -95° .

Results and Discussion

All of the new difluorophosphines at room temperature are colorless, volatile liquids which react readily with water but do not attack glass or mercury. While the $R_fC(O)$ OPF₂ compounds $(R_f = CF_3, C_2F_5,$ C_3F_7 may be stored at 25° under vacuum for extended periods of time without decomposition, $CH_3C(O)OPF_2$ decomposes to a red polymeric material within 24 hr under the same conditions. However, the latter may be transferred in a vacuum system and stored at -183° without polymerization occurring. Because of this thermal instability, the normal boiling point was not determined.

The hydrolysis of each of the $RC(O)$ OPF₂ compounds was followed qualitatively by infrared spectroscopy. The admission of a small amount of moist air into an infrared cell which contained a sample of the pure compound resulted in a spectrum that showed bands attributable to $(RC(O))_2O$ and PF_2OPF_2 accompanied by a decrease in the intensity of the original bands. Additional moist air converted the anhydride to $RC(O)OH.$

Since chloro-, bromo-, and iododifluorophosphines react with these silver salts with equal ease, it is preferable to use either the chloro or bromo compound because of its relatively greater stability. PF_2I tends to disproportionate into PF_3 and PI_3 ²

Characteristic P-F stretching frequencies in the infrared region (Table I) occur in the range from 850 to 900 cm⁻¹. In $R_fC(O)OPF_2$ ($R_f = CF_3$, C_2F_5 , and $n-C_3F_7$) bands between 1805 and 1809 cm⁻¹ are due to $C=O$; while for $CH_3C(O)OPF_2$ this band shifts to 1780 cm⁻¹. The CF stretching region in $R_fC(O)$ OPF₂ encompasses a wide range $(1000-1400 \text{ cm}^{-1})$. The bands in PF_2NCO may be assigned as follows: 2400 and 2285 cm-' NCO pseudoantisymmetric stretch, in and out of phase; 1435 and 1405 cm^{-1} , NCO pseudosymmetric stretch, in and out of phase; 857 cm⁻¹, PF_2 stretch; 715 cm^{-1} , PNCO deformation, in plane.¹³ Since bands occur in the $1400-1500$ -cm⁻¹ region and a

(13) F. **A.** Miller and G. L. Carlson, *Spectrochzm. Acta,* **17,** 977 (1961).

cyanate is not expected to have any fundamentals between 1200 and 2000 cm^{-1} , the compound formed in the reaction of PF_2Cl with AgOCN must be the isocyanate $PF₂NOO$. The mass spectral evidence below also helps to verify this conclusion. PF_2CN was identified from its previously reported infrared spectrum.^{3a}

The ¹⁹F nmr spectra of $R_fC(O)$ OPF₂ and $RC(O)$ OPF₂ are consistent with the postulated compounds. Fluorine-chemical shifts of PF_2 groups in the region between ϕ^* 44 and 50 are analogous to those in ROPF₂ compounds $(R = alkyl, phenyl).¹⁴$ No spin-spin coupling is observed between fluorine bonded to phosphorus and fluorine or hydrogen in the carboxalato groups. The $J_{\text{P-F}}$ values found are about 1380 cps for the perfluoro compounds and decrease slightly when phosphorus is bonded to NCO or $CH_3C(0)O$. This is also observed as fluorine is replaced by less electronegative groups in the series PF_3 , CF_3PF_2 , and CH_3PF_2 .¹⁴

Although molecular ions in the mass spectra (Table III) are observed for all compounds except $CF₃CO$. $OPF₂$ and $CH₃C(O)OPF₂$, only in the case of $PF₂NCO$ does this species occur in appreciable relative abundance (59.5) . In PF₂CN, the parent ion is also the second most abundant peak.^{3a} The presence of peaks at m/e 45 (PN⁺) and m/e 64 (PF₂N⁺) and the absence of m/e 85 ($PF₂O⁺$) lend support to the infrared evidence that the compound is an isocyanate rather than a cyanate. Existence of peaks at *m/e* 47 (PO+) and m/e 43 (HNCO) for $PF₂NCO$ and analogous fragments for the other compounds can arise from hydrolysis, *e.g., m/e* 45 (COOH⁺), *m/e* 135 (PF₂OPF⁺), and m/e 154 ($PF_2OPF_2^+$). Also, for $CH_3C(O)OPF_2$, m/e 60 $(CH_3C(O)OH)$ and for $C_2F_5C(O)OPF_2$ and $C_3F_7C(O)$ -OPF₂, m/e 86 (HPF₂O) are observed. Fragmentation patterns for all compounds contain some ions derived from rearrangement, *e.g.*, m/e 88 (CF₄⁺, PF₃⁺). For $R_fC(O)$ OPF₂ ($R_f = CF_3$, C_2F_5 , C_3F_7), fragments, including some which are a result of rearrangement, $e.g., CF₂H⁺, CF₃CO⁺, and CF₃CO₂⁺, typically associ$ ated with perfluorocarboxylic acids occur.15

Acknowledgments.-This work was supported in part through a contract with the Office of Naval Research. We are indebted to the National Science and the Max C. Fleischmann Foundations for grants to purchase the HA-100 nmr spectrometer. The authors wish to thank Mr. Leon Zaborowslii for the $19F$ nmr spectra and Dr. Gary R. Hansen and Mr. Robert Boyd for the mass spectra.

⁽¹⁴⁾ R. Sohmutzler, *Adtan. Fluorine Chem* , *5,* **254** (1965)

⁽¹⁵⁾ **J.** R. **Majer,** *%bid,* **2,** 70 (1961)